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STEADY-STATE VERTICAL THERMOELASTIC
OSCILLATIONS IN A SYSTEM OF TWO PLANE-
PARALLEL LAYERS WITH FRICTION HEAT
GENERATION

D. V. Grilitskii and P. P. Krasnyuk UDC 539.3

We present a mathematical statement and construct a solution for the problem of thermoelasticity in contact
interaction between two plane-parallel layers under the action of external loading periodically varying with
time.

The problem of static thermoelasticity in contact interaction between two plane-paraliel layers uniformly
pressed normally against the contact plane with allowance for heat generation and abrasive wear was investigated
in [1, 2].

Below we will consider a dynamic contact problem of thermoelasticity for determining steady-state vertical
thermoelastic oscillations and temperature fields in a system of two plane-parallel layers exposed to a harmonic
normal load (Fig. 1). In this case we take into account heat generation in the contact plane of the layers under the
action of friction forces obeying Amonton’s law.

Suppose we have a packet of two plane-parallel layers. The lower plane of the packet is rigidly fastened
and a pressing load ¢ = gg + g exp (—&#7) (0 < ¢; < g is applied to the upper plane. The weight of the layers
will be taken into account.

We assume that the upper layer moves over the surface of the lower layer with a constant small velocity vg
in the direction of the z-axis. It is assumed that heat generation occurs in the contact plane of the layers, the
thermal contact of the bodies is nonideal, and that heat exchange between the external planes of the layers and
the surrounding medium (whose temperature is taken to be equal to zero) follows the Newton law.

We will determine temperature fields, heat fluxes, thermoelastic displacements and stresses in the two-
layer packet.

In the given statement of the problem the temperature Y, displacement V; and stress o}({) =1, 2) will be
functions of the coordinate y and time 7. The problem is reduced to solving a system of equations:
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under the following boundary and contact conditions:
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Fig. 1. Diagram of problem of contact interaction between two plane-parallel
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layers.
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Considering the linearity of the initial equations, boundary and contact conditions, we present the desired
solution of the problem in the form of a sum of two terms:

40, 1) =T,(9) + 3 (0) exp (- 1),
V;(0n 1) = V; () + V; (3) exp (= 1), (10)
P 3= )+ G exp(- 1), j=1,2.

Substituting relations (10) into Eqgs. (1), (2), and (3), satisfying conditions (4)-(8), and equating the
expressions at exp (—#71), we obtain two boundary-value problems for determining the components of solution
(10), which are not given here.

The solution of the first boundary-value problem concerning the contact interaction of layers with allowance
for their proper weight and steady-state heat generation is represented by the relations

T=A4y+ 5, Vj=0.5y2(ﬁjAj+pjg77j—l)+ij+Dj, o
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in which the component of the contact pressure pg is equal to that of the external load go.

A simple analysis of Egs. (10) and (1) shows that the temperature, and, as a result, thermoelastic
displacements and stresses of the second boundary-value problem, will be complex functions of a real argument.
Introducing the complex parameter A; = Vt’vkj‘l, we obtain the following expressions for determining the
temperature of the layers ¢ ;(y):
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where
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the upper sign in the combination + corresponds to the value j = 1 and the lower to j = 2.
The thermoelastic displacements and stresses take the form:
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where ¢; = f;(v"c 7, — A7)

The unknown component of the contact pressure p; is determined from the condition of the equality of
thermoelastic displacements on the contact plane. Using expressions (14), we obtain a formula for defining p;:
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Fig. 2. Time-dependence of heat flux for four values of distance from contact
plane @ =x/6 sec”'): 1) y=0, 2) £0.01 m, 3) +0.02 m, 4 +0.05—0.1 m.
g, kW/m% 1, sec.

Fig. 3. Time-dependence of temperature for two values of distance from
contact plane (v = /6 sec H: 1) y=0, 2) y= +0.01 m (dashed lines
correspond to the temperature of the stationary problem). ¢, °C.

— e2d)7; (0)) cos (vey 1hy) sin (vey yhy) — e1d,T;" (= hy) sin (vep ghp) +

+ vy yd, (k) cos (vey 1hy) ]} = gy cos (vey 1hy) (16)
in which the functions 7j*(y) are related to the temperature of the layers 7j(y) by the relation Tj‘(y) = fvopl?j*(y).
Since the parameter ¢; is complex and 7; () is a complex function of a real argument, the component of the contact
pressure p; will also be complex: p; = pgl) + ipﬁz).

Initial problem (1)-(8) is finally determined from formulas (10), in which the solution of the second bound-
ary-value problem is represented by complex functions of a real argument.

In order to calculate the temperature fields, thermoelastic displacements and stresses, one must use the
real parts of expressions (10). This corresponds to a change in the external load according to the law ¢ =
go + g1 cos (v7) (0 < g1 < go)-

A numerical analysis of the problem is carried out for a steel-steel friction pair (E; = 2.06- 10° MPa, v; =
0.28, p; = 7.8-10° kg/m?, 4; = 47 W/ (m-K), k; = 0.1295-10™* m*/sec, a; = 11.7-10" K~) and for the values of
the main parameters: go = 0.4 MPa, ¢ = 0.2 MPa, A= 10 kW/(m2 K), g=9.81 m/sec?, f=0.25, vg = 3 m/sec, y;
=y2=20m" L, A; = Ay = 0.1 m, v = 0.0001—1000 sec™".

A numerical analysis of the solution makes it possible to conclude that the imaginary part p§2) of the
component of the contact pressure p; can be neglected and it may be assumed that p; = p{l) = g;. In this case the
stresses <=7y(f) in the system are invariable over the packet thickness and are equal to the component ¢; of the
external load.

The analytical expressions obtained and the analysis of the numerical results show that heat generation
as well as the distribution of temperature and heat flux in the two-layer system considered have a fluctuational
character. The fluctuations attenuate with distance from the contact plane. Graphs of the variations in time of the
heat flux at v = /6 sec” ! are given in Fig. 2, where curve 4 corresponds to the heat flux of stationary problem
(11)-(12). A decrease in the frequency v slows down this attenuation, but when the frequency decreases consider-
ably, oscillations of the heat flux appear, which are independent of the coordinate y and have the frequency of the
external load.

The temperature fluctuations lag in phase from changes in the heat flux. Graphs of the temperature
distribution are depicted in Fig. 3. As the frequency v increases, the fluctuation amplitude of the temperature
decreases at a fixed coordinate y. A decrease in v decreases the phase shift between fluctuations of the heat flux
and temperature, and increases the temperature amplitude.
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Heat generation also causes a phase shift between fluctuatious of vertical displacements and stresses. This
shift decreases with a decrease in the frequency v. The amplitude of the change in displacement, being maximum
on the loaded surface, decreases with an increase of the parameter v, and already atv =mx/6 sec”! the thermoelastic
fluctuations of the displacement can be neglected.

Effects similar to those considered above are observed with a change in the thermal diffusivity parameter.
An increase in k; causes the same effects that are manifested with a decrease in the fluctuation frequency v. As we
know, in nonstationary problems of heat conduction an increase in the thermal diffusivity parameter decreases the
time needed for the temperature to attain a stationary value. In the given problem a decrease in the frequency v
increases the residence time of the system in a "stationary” state, which is characterized by relative constancy of
the external load. Thermoelastic oscillations of the system can be considered in this case as transition from one
thermoelastic stationary state to another, which is characterized by relatively constant loads.

NOTATION

g = go + g exp (—7), external pressure; p = po + p; exp (ivr), contact pressure; v, frequency of
fluctuations of the external load; z, time; ¢, j = 1, 2, temperature; V}, j= 1, 2, displacement; d(D, j=1, 2, stress;
¥, spatial coordinate; vg, velocity; g, free fall acceleration; A, thermal conductivity of the contact plane; f, friction
coefficient; A;, j =1, 2, thickness of the layers; p;, j = 1, 2, density; Ej, j=1, 2, Young modulus; v;, a;, @j, 4, kj,
=1, 2, coefficients of Poisson, linear temperature expansion, heat transfer, thermal conductivity and of thermal
diffusivity; ¢ j, j = 1, 2, speed of propagation of longitudinal waves.
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